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Abstract

Time-harmonic electromagnetic scattering by inhomogeneous, three-dimensional structures within a free space envi-
ronment can be described by electric- and magnetic field, volume integral equations involving the free space Green
function. A comprehensive set of Galerkin projection formulations (also known as moment methods) for the numerical
solution of these equations is presented, together with comparative numerical results. Such formulations are widely used
for particle scattering analysis, optical near field calculation, etc. Results are obtained with higher-order, divergence-
and curl-conforming basis functions on iso-parametric, tetrahedral meshes. The results demonstrate that all formula-
tions converge with similar accuracy in the case of an analytically-solvable test problem. When modeling flux densities
as solution variables, it is argued that solenoidal function spaces should be used, rather than the standard divergence-
conforming function spaces; this assertion is supported by the results. Some of the formulations involve solving for
curl-conforming fields; such fields can be discretized with fewer unknowns than divergence-conforming ones, implying
lower computational costs. Additionally, some formulations yield system matrices which are approximately half-way
sparse, meaning that computational costs will be down by a factor of 2 when iterative solvers are employed, which
is the case for the widely-used fast methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Time-harmonic electromagnetic scattering by inhomogeneous three-dimensional (3D) structures charac-
terized by permittivity and permiability functions �(x, y, z) and l(x, y, z), and located within a free space
environment, can be described by electric- and magnetic field, volume integral equations (EF-VIE and
MF-VIE) involving the free space Green function. This paper presents a set of Galerkin projection formu-
lations for the numerical solution of these VIE’s, with comparative numerical results.
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The electromagnetic VIE’s have been solved numerically by many workers over the years, with wide rang-
ing applications. In 1984, Schaubert et al. [1] formulated the Galerkin solution of the EF-VIE for dielectric
scatterers in terms of the electric flux density with conforming (Raviart–Thomas) vector basis functions, for
the first time. This approach and its counterpart based on collocation (together referred to as moment methods
[2,3]) have found wide ranging applications ever since, e.g.: particle scattering [4,5], optical near field calcula-
tion [6,7], polarizability analysis [8], indoor radio-wave propagation modeling [9], etc. Various features were
added to this formulation, such as fast solvers enabling large-scale analysis (cf. [10]), coupling with surface IE’s
[11], low-order solenoidal basis functions to model flux densities more realistically [12,13], and a special ver-
sion for low-frequency analysis [14] – but the basic projection formulation has essentially remained
unchanged. The idea of solving the MF-VIE for dielectric scatterers instead (analogous to solving either
the EF- or MF surface IE in the case of conducting scatterers [2]) has not received much attention, though
it has been proposed in [15,16]. Moreover, VIE-based analysis of structures with inhomogeneity in both �
and l has almost not been considered at all.

Given the above discussion, it is clear that numerical solutions of the electromagnetic VIE’s continue to be
a relevant topic, and that such methods are widely used. It is also clear that there are still some unresolved
issues relating to MF-VIE-based dielectric formulations and the lack of formulations for generally inhomoge-
neous scatterers, which deserve attention. The main contributions of this paper relate to these issues, and are
as follows:

(1) The presentation of a comprehensive set of VIE-based Galerkin formulations for dielectric, magnetic, as
well as generally inhomogeneous scatterers – some of which are new, with pre-existing ones included for
completeness.

(2) Comparative numerical results, using recently proposed higher-order basis functions which have the
mimetic property [17] (divergence-conforming [18] and curl-conforming [19]), together with higher-order
geometric representations – studying the convergences of the presented formulations.

(3) The issue of solenoidal flux representations vs. standard divergence-conforming representations is con-
sidered with comparative numerical results.

The paper is organized as follows. First, the VIE’s for time-harmonic electromagnetic fields are derived in
Section 2. Galerkin projection methods for their numerical solution are established in Section 3, categorized
according to the material properties of the scatterer. The section concludes with discussions on symmetriza-
tion, discretization on tetrahedral grids, and solvability. Then follows numerical results in Section 4, which
includes error convergence studies for all formulations and the analysis of scattering by a general object,
not possessing an analytical solution. The paper ends with some conclusions.
2. Volume integral equations for electromagnetic fields

2.1. Maxwell’s equations in time-harmonic form

Given a positive frequency convention ejxt ðj ¼
ffiffiffiffiffiffiffi
�1
p

Þ, the 3D, time-harmonic Maxwell equations in phasor
format are as follows:
r� E ¼ �jxB�Msrc; ð1Þ
r �H ¼ þjxDþ Jsrc; ð2Þ
D ¼ �E; ð3Þ
B ¼ lH. ð4Þ
At any angular frequency x > 0, this set of four equations may be solved in terms of the four quantities E, H

(electric- and magnetic fields), D and B (electric- and magnetic flux densities). The impressed electric- and
magnetic volume current sources Msrc and Jsrc provide the excitation. The permittivity and permeability
are functions of position, and can be expressed in terms of relative values multiplied with the values in free
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space (vacuum), i.e. � = �r�0 and l = lrl0; �r and lr are generally complex-valued, with real parts P1. From (1)
and (2) it follows that
r �D ¼ � 1

jx
r � Jsrc; r � B ¼ � 1

jx
r �Msrc. ð5Þ
2.2. The volume equivalence principle

The set of equations (1)–(4) can be reformulated by way of the volume equivalence principle, which states
that field-dependent sources may be introduced into Maxwell’s equations, such that an equivalent set of equa-
tions is obtained with the same field solution, but now existing in free space (�r = lr = 1) [20]. Start by elim-
inating D and B from (1) and (2), and rewrite the resulting equations as
r� E ¼ �jxl0H�Msrc � jxl0ðlr � 1ÞH;
r�H ¼ þjx�0Eþ Jsrc þ jx�0ð�r � 1ÞE.
Now define the equivalent sources as
Jeq ¼ jx�0ð�r � 1ÞE; Meq ¼ jxl0ðlr � 1ÞH; ð6Þ

to obtain the new set of free space equations, with the same solution as (1)–(4):
r� E ¼ �jxl0H�Msrc �Meq; ð7Þ
r �H ¼ þjx�0Eþ Jsrc þ Jeq. ð8Þ
2.3. Volume integral equations

There are well-known, integral equation representations of the solutions to Maxwell’s equations in free
space [21]. Given a bounded domain K � R3, define the following two integral operators:
NðK; vÞ � jk0

Z
K

Geðr; r0Þ � vðr0ÞdV 0; ð9Þ

MðK; vÞ � �
Z

K
Gmðr; r0Þ � vðr0ÞdV 0; ð10Þ
where the free space, dyadic Green functions of electric- and magnetic types are defined as
Geðr; r0Þ � I � 1

k2
0

r r0
 !

G0ðr; r0Þ; Gmðr; r0Þ � rG0ðr; r0Þ � I . ð11Þ
Here, G0ðr; r0Þ � e�jk0jr�r0 j=4pjr� r0j denotes the free space scalar Green function.
Now suppose that Jsrc 6¼ 0 on K, is an arbitrary enforced electric current distribution in free space, then the

resulting electromagnetic fields can be obtained as follows:
EðrÞ ¼ �Z0NðK; JsrcÞ; HðrÞ ¼ �MðK; JsrcÞ; r 2 R3; ð12Þ

where k0 = x/c0 and Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
denote the free space wave-number and wave-impedance, respectively.

Now consider the equivalent free space system (7), (8). Suppose that �r 6¼ 1 and lr 6¼ 1 on a bounded
domain X � R3. The VIE’s for general, inhomogeneous scatterers follow by duality from (12), as
E ¼ Einc � Z0NðX; JeqÞ þMðX;MeqÞ; ð13Þ

H ¼ Hinc �MðX; JeqÞ �
1

Z0

NðX;MeqÞ; ð14Þ
where the effects of the true sources Jsrc and Msrc were consolidated into the incident field terms Einc and Hinc.
These two equations will be called the EF-VIE and MF-VIE, respectively; their numerical solution via Galer-
kin projection is the subject of the rest of this paper.
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As an aside, observe that Nð�; �Þ is hypersingular, and therefore requires special attention when evaluating
the fields inside the source region, as discussed by various authors (cf. [2,21]). This issue will not be dealt with
here, since the hypersingularity vanishes in all the numerical formulations to be presented.
3. VIE-based, Galerkin projection methods

This section formulates the numerical solution of the EF- and MF-VIE’s by way of the Galerkin projection
method [22]. In order to formulate a Galerkin projection method, one needs to choose the equation(s) to solve,
the solution variable(s) and associated function space(s). A comprehensive set of formulations will be pre-
sented, each catering for a specific combination of scatterer-type and solution variable(s). The various possible
solution variables will first be discussed, followed by the various possible formulations, classified with respect
to dielectric, magnetic, or general scatterers. The section ends with discussions on symmetrization, discretiza-
tion and solvability.

3.1. Solution variables and function spaces

From power conservation arguments [23], it follows that the physical electromagnetic quantities E, D, H

and B are square integrable in R3, and therefore also in X. Specifically, if the incident fields in the EF- and
MF-VIE are required to relate to solenoidal sources $ Æ Jsrc = $ Æ Msrc = 0 (see (5)), then
E;H 2 V curl; D;B 2 V div;0 ð15Þ
with
V curl ¼ fv 2 Hðcurl;XÞg; V div;0 ¼ fv 2 Hðdiv;XÞ jr � v ¼ 0g; ð16Þ
where H(curl, X) and H(div, X) denote the spaces of vector functions, which together with their curls and
divergences, respectively, are square integrable on X (i.e. curl- and divergence-conforming functions).

The VIE’s are stated in terms of the physical electromagnetic quantities on the one hand, and the equiv-
alent currents on the other. Since there exists simple, linear relationships between these two sets of quanti-
ties, it follows that one may equally well endeavour to solve the VIE’s in terms of either set. However, the
equivalent currents are linear combinations of curl- and divergence-conforming quantities and as such are
non-conforming, implying larger solution spaces. Thus, it is more favorable to solve the VIE’s in terms of
the physical electromagnetic quantities. The equivalent sources may be expressed as Jeq = jxv�D and
Meq = jxvlB, where
v� ¼
�r � 1

�r
; vl ¼

lr � 1

lr
ð17Þ
denote the electric and magnetic contrast ratios, to be employed later-on.
3.2. Testing the integral operators

Formulating Galerkin projection methods for the VIE’s imply evaluating the complex-valued L2-inner
products of suitable testing functions, with the integral operators Nð�; �Þ and Mð�; �Þ applied to suitable expan-
sion functions. In this section the appropriate choices are determined and the resolution of the hypersingular-
ity in Nð�; �Þ is established.

Let a and b denote arbitrary testing and expansion functions with domains of support A and B, respec-
tively. Consider the testing of Nð�; �Þ first. To resolve the hypersingularity of order 1/R3, transfer the gradi-
ent-operators away from the Green function by one or two successive applications of Gauss’ Theorem.
This yields the following three possibilities:
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Z
A

a �NðB; bÞdV ¼ jk0

Z
A

Z
B

aðrÞ �G0ðr; r0Þbðr0ÞdV 0 dV þ j

k0

Z
A

Z
B

aðrÞ � rG0ðr; r0Þr0 � bðr0ÞdV 0 dV

� j

k0

Z
A

I
oB

aðrÞ � rG0ðr; r0Þn̂0 � bðr0ÞdS0 dV

¼ jk0

Z
A

Z
B

aðrÞ �G0ðr; r0Þbðr0ÞdV 0 dV þ j

k0

Z
A

Z
B
r � aðrÞr0G0ðr; r0Þ � bðr0ÞdV 0 dV

� j

k0

I
oA

Z
B

n̂ � aðrÞr0G0ðr; r0Þ � bðr0ÞdV 0 dS

¼ jk0

Z
A

Z
B

aðrÞ �G0ðr; r0Þbðr0ÞdV 0 dV � j

k0

Z
A

Z
B
r � aðrÞG0ðr; r0Þr0 � bðr0ÞdV 0 dV

þ j

k0

I
oA

Z
B

n̂ � aðrÞG0ðr; r0Þr0 � bðr0ÞdV 0 dS þ j

k0

Z
A

I
oB
r � aðrÞG0ðr; r0Þn̂0 � bðr0ÞdS0 dV

� j

k0

I
oA

I
oB

n̂ � aðrÞG0ðr; r0Þn̂0 � bðr0ÞdS0 dS. ð18Þ
From this result it is clear that either the expansion or testing function for Nð�; �Þ must at least be divergence-
conforming. This places some restrictions on the construction of numerical methods. It is also clear that when
the testing and expansion functions are the same, the contribution of the singularity will be properly tested.
The third form is the easiest to evaluate numerically, because its weak singularity (1/R) is one order lower than
those in the first and second forms (i.e. 1/R2), however, both expansion and testing functions are required to be
divergence-conforming in the case of the third form.

Next consider the testing of Mð�; �Þ:
Z
A

a �MðB; bÞdV ¼
Z

A

Z
B

aðrÞ � r0G0ðr; r0Þ � bðr0ÞdV 0 dV . ð19Þ
In this case the operator is weakly singular (of order 1/R2) and there are no requirements on the conformity of
the testing and expansion functions. However, note that as a consequence of the cross product in the kernel,
the singularity will make no contribution when the testing and expansion functions are the same.

3.3. Formulations for dielectric scatterers

For a dielectric scatterer, Meq = 0. First consider solving the EF-VIE. Of the four possible solution vari-
ables, only D is suitable. To see this, consider the other three: E is unacceptable because either the argument
or the testing function of Nð�; �Þ must be divergence-conforming (see Section 3.2); B will not work, because
then the curl of a divergence-conforming quantity will be required to obtain E; finally, H is also not feasible,
since it will only feature as $ · H, which is not uniquely solvable. The Galerkin approach involves using the
same function space for testing, as for expansion, it follows that divergence-conforming testing is required in
the case of D. The resulting formulation is
Formulation D.1 : Find D 2 V div;0 such that

BðD;VÞ ¼ LðVÞ 8 V 2 V div;0

with

BðD;VÞ ¼
Z

X

D

�r�0

þ Z0NðX; jxv�DÞ
� �

� VdV ;

LðVÞ ¼
Z

X
Einc � VdV .

8>>>>>>>>><
>>>>>>>>>:

ð20Þ
Now consider solving the MF-VIE. In this case H is the only appropriate solution variable. Both D and B are
unacceptable, since either will lead to taking the curl of a divergence-conforming function. E is not an option,
due to the issue of poor testing, as described in Section 3.2. The resulting formulation is
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Formulation D.2 : Find H 2 V curl such that

BðH;WÞ ¼ LðWÞ 8 W 2 V curl

with

BðH;WÞ ¼
Z

X
½HþMðX; v�r�HÞ� �W dV ;

LðWÞ ¼
Z

X
Hinc �WdV .

8>>>>>>>>><
>>>>>>>>>:

ð21Þ
The EF-VIE formulation has been widely used in the past, but most often with the general divergence-
conforming solution space Vdiv = {v 2 H(div, X)}. The current form of the MF-VIE formulation has now
been presented for the first time – the MF-VIE has been expressed in terms of the H-field in the past
[15,16], but its subsequent solution via Galerkin projection onto a curl-conforming solution space (i.e. formu-
lation (21)) has not been presented before, to the author’s knowledge.

3.4. Formulations for magnetic scatterers

In this case Jeq = 0. By duality, one obtains two formulations similar to those proposed for the dielectric
scatterer, but now in terms of the solution variables B and E, as follows:
Formulation M.1 : Find B 2 V div;0 such that

BðB;VÞ ¼ LðVÞ 8 V 2 V div;0

with

BðB;VÞ ¼
Z

X

B

lrl0

þ 1

Z0

NðX; jxvlBÞ
� �

� VdV ;

LðVÞ ¼
Z

X
Hinc � VdV .

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

Formulation M.2 : Find E 2 V curl such that

BðE;WÞ ¼ LðWÞ 8 W 2 V curl

with

BðE;WÞ ¼
Z

X
½E�MðX;�vlr� EÞ� �WdV ;

LðWÞ ¼
Z

X
Einc �WdV .

8>>>>>>>>><
>>>>>>>>>:

ð23Þ
3.5. Formulations for general scatterers

In the case of a generally inhomogeneous scatterer, both Jeq and Meq are present. A straightforward exten-
sion of the standard formulations (20) and (22) is to solve the EF-VIE and MF-VIE simultaneously, with
Jeq = jxv�D and Meq = jxvlB, i.e.
Formulation G.1 : Find ½D;B� 2 V div;0 � V div;0 such that

Bð½D;B�; ½V;X�Þ ¼ Lð½V;X�Þ 8 ½V;X� 2 V div;0 � V div;0

with

Bð½D;B�; ½V;X�Þ ¼
Z

X

D

�r�0

þ Z0N X; jxv�Dð Þ �M X; jxvlB
� �� �

� VdV

�
Z

X

B

lrl0

þ 1

Z0

N X; jxvlB
� �

þMðX; jxv�DÞ
� �

� XdV ;

Lð½V;X�Þ ¼
Z

X
Einc � VdV �

Z
X

Hinc � XdV .

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð24Þ
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Taking a cue from formulations (21) and (23), the two VIE’s may also be simultaneously solved with the sub-
stitutions Jeq = v�$ · H and Meq = �vl$ · E, yielding
Formulation G.2 : Find ½E;H� 2 V curl � V curl such that

Bð½E;H�; ½W;Y�Þ ¼ Lð½W;Y�Þ 8 ½W;Y� 2 V curl � V curl

with

Bð½E;H�; ½W;Y�Þ ¼
Z

X
½Eþ Z0NðX; v�r�HÞ �MðX;�vlr� EÞ� �WdV

þ
Z

X
½Hþ 1

Z0

NðX;�vlr� EÞ þMðX; v�r�HÞ� � YdV ;

Lð½W;Y�Þ ¼
Z

X
Einc �W dV þ

Z
X

Hinc � YdV .

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð25Þ
Note that in both the above formulations all self-interactions are properly tested. Further observe that
the MF-VIE has been scaled by �1 in (24), to facilitate symmetrization, to be discussed later-on. Concerning
formulation (25): the first form of Nð�; �Þ-testing (18) must be used here, since the testing functions are not
divergence-conforming, while the operator argument is ($ · v 2 Vdiv,0 " v 2 Vcurl).

One can also formulate methods in terms of a single integral equation. Consider the EF-VIE first. With the
substitutions Jeq = jxv�D and Meq = �vl$ · E, the EF-VIE may be solved together with the electric field con-
stitutive relation (3) in two possible ways, yielding the following two formulations:
Formulation G.3 : Find ½D;E� 2 V div;0 � V curl such that

Bð½D;E�; ½V;W�Þ ¼ Lð½V;W�Þ 8 ½V;W� 2 V div;0 � V curl

with

Bð½D;E�; ½V;W�Þ ¼
Z

X

D

�r�0

þ Z0NðX; jxv�DÞ �MðX;�vlr� EÞ
� �

� VdV

þ
Z

X
� D

�r�0

þ E

� �
�WdV ;

Lð½V;W�Þ ¼
Z

X
Einc � VdV .

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð26Þ

Formulation G.4 : Find ½E;D� 2 V curl � V div;0 such that

Bð½E;D�; ½W;V�Þ ¼ Lð½W;V�Þ 8 ½W;V� 2 V curl � V div;0

with

Bð½E;D�; ½W;V�Þ ¼
Z

X
½Eþ Z0NðX; jxv�DÞ �MðX;�vlr� EÞ� �WdV

þ
Z

X

D

�r�0

� E

� �
� VdV ;

Lð½W;V�Þ ¼
Z

X
Einc �W dV .

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð27Þ
Two similar formulations, based on the MF-VIE and the magnetic field constitutive relation (4) may also be
established, i.e.
Formulation G.5 : Find ½B;H� 2 V div;0 � V curl such that

Bð½B;H�; ½V;W�Þ ¼ Lð½V;W�Þ 8 ½V;W� 2 V div;0 � V curl

with

Bð½B;H�; ½V;W�Þ ¼
Z

X

B

lrl0

þ 1

Z0

NðX; jxvlBÞ þMðX; v�r�HÞ
� �

� VdV

þ
Z

X
� B

lrl0

þH

� �
�W dV ;

Lð½V;W�Þ ¼
Z

X
Hinc � VdV .

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð28Þ
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Formulation G.6 : Find ½H;B� 2 V curl � V div;0 such that

Bð½H;B�; ½W;V�Þ ¼ Lð½W;V�Þ 8 ½W;V� 2 V curl � V div;0

with

Bð½H;B�; ½W;V�Þ ¼
Z

X
Hþ 1

Z0

NðX; jxvlBÞ þMðX; v�r�HÞ
� �

�W dV

þ
Z

X

B

lrl0

�H

� �
� VdV ;

Lð½W;V�Þ ¼
Z

Hinc �WdV .

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð29Þ
X

3.6. Symmetrization

From (18) and (19) and the definitions of the dyadic Green functions, it is clear that the tested integral oper-
ators possess the following symmetry properties:
Z

A
a �NðB; bÞdV ¼

Z
B

b �NðA; aÞdV ;

Z
A

a �MðB; bÞdV ¼
Z

B
b �MðA; aÞdV . ð30Þ
It follows that formulations (20), (22), and (24) may be symmetrized by scaling the testing functions with the
contrast functions of (17), i.e. solving
Formulation D.1 (20): BðD; v�VÞ ¼ Lðv�VÞ; ð31Þ
Formulation M.1 (22): BðB; vlVÞ ¼ LðvlVÞ; ð32Þ
Formulation G.1 (24): Bð½D;B�; ½v�V; vlX�Þ ¼ Lð½v�V; vlX�Þ ð33Þ
instead. The above bilinear forms are symmetric with respect to testing and expansion functions. For formu-
lation (20), this kind of symmetrization has been proposed in [24].

The remaining formulations are not symmetrizable in this manner, and symmetrization will not be further
explored here.

3.7. Discretization

In order to solve the proposed formulations numerically, the infinite-dimensional solution spaces Vdiv,0 and
Vcurl must be approximated by suitable finite-dimensional sub-spaces. The finite element procedure followed
here to obtain these sub-spaces entails dividing the problem domain X into a mesh of tetrahedral elements and
then employing conforming vector basis functions on each element.

In the case of Vcurl, the hierarchical, mixed- and full-order, curl-conforming basis functions proposed in [19]
are used.

In the case of Vdiv,0, the hierarchical, divergence-conforming, solenoidal basis functions proposed in [18] are
used. Note that in order to obtain the zeroth-order solenoidal basis functions, a tree–cotree decomposition
must be performed on the set of global mesh edges, as described in [18,25].

A special case arises regarding formulations (20) and (22), since the larger solution space Vdiv has tradi-
tionally been used here [1,13]. For this historical reason, it will also be considered when evaluating these
formulations later on, even though such an approach constitutes a ‘‘variational crime’’ [26]. The space Vdiv

can be represented by the full- and mixed-order, divergence-conforming basis functions, also proposed in
[18].

Iso-parametric elemental geometric representations are employed, i.e. the order of geometric representation
is matched with the order of the basis functions (leading to curviliear representations for orders above one).
An exception is made in the case of the zeroth-order solenoidal basis functions: here a super-parametric, first-
order geometric representation will be used.

Finally, observe that all of these discrete field representations have the mimetic property [17], and except for
the zeroth-order solenoidal basis functions, are Nédélec-compliant [27,28] – as discussed in the references.
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3.8. Solvability

Both the EF-VIE and MF-VIE are second-kind Fredholm integral equations. Unfortunately, it has been
shown that the integral operator Nð�; �Þ is not compact [29]. Therefore, the standard apparatus (cf. [22,30])
for determining the conditions under which these formulations will yield uniquely convergent solutions, does
not directly apply. Here the error convergence will be studied numerically, as has been suggested in other cases
[31].

4. Numerical results

The accuracy of the proposed formulations will now be evaluated numerically. Error convergence is con-
sidered in the context of sphere scattering, where analytical results are available, as is standard practice [31].
Subsequently, scattering by a general object is calculated and compared with results obtained with an indepen-
dent numerical scheme.

4.1. Integrated RCS error convergence

In this section, results obtained with the various formulations will be presented for the error in the bistatic
radar cross section (RCS), integrated over the unit sphere (i.e. the maximum solid angle), and normalized with
respect to the true RCS. This error quantity is defined as follows:
er ¼
krðh;/Þ � ~rðh;/ÞkL2ð� Þ

krðh;/ÞkL2ð� Þ
; ð34Þ
where r(h, /) and ~rðh;/Þ represent the exact and calculated bistatic RCS, respectively; and � represents the
unit sphere surface. The bistatic RCS is defined as
rðh;/Þ � lim
r!1

4pr2 jEscatðr; h;/Þj2

jEincj2
; ð35Þ
where the scattered field Escat is calculated with the EF-VIE in the case of ~r.

4.1.1. Formulations for dielectric and magnetic scatterers

Only results from the formulations for dielectric scatterers will be presented, since the magnetic scatterer
formulations are the duals of these. The test problem is a homogeneous unit sphere (r0 = 1 m) with material
parameters �r = 2 and lr = 1. The structure is exited with a plane wave at k0 = 10 m.

Consider formulation (20) first. Here the solution space is required to be Vdiv,0, but the larger space Vdiv will
also be considered, for the historical reason noted above. Fig. 1 shows the integrated RCS error as a function
of both mesh size, and degrees of freedom, when using zeroth-, first- and second-order solenoidal basis func-
tions. Asymptotic convergence behaviour can be observed. It is interesting that the zeroth- and first-order ele-
ments perform similarly, making the zeroth-order ones more attractive in terms of degrees of freedom. This
might be due to their super-parametric characteristic. Fig. 2 shows the same set of results, but obtained with
the solution space Vdiv instead — mixed- and full order, divergence-conforming basis functions of first- and
second-orders are employed. In this case, the convergence behaviour is somewhat erratic as compared to the
solenoidal results, which could relate to the fact that non-physical, non-solenoidal components are now being
included in the solution space [12]. These non-physical components lead to the presence of a spurious charge
distribution in the problem domain.

Now consider formulation (21). In Fig. 3 the same set of results is presented as above. The solution space is
now Vcurl, and is discretized with mixed- and full order, curl-conforming basis functions of first- and second-
orders. Here, the mixed- and full-order elements give almost identical results in terms of accuracy, but with less
degrees of freedom in the mixed-order case. For non-smooth problems, one may expect superior accuracy
from the full-order elements, as discussed in the context of curl-conforming, electromagnetic, finite element
analysis, in [19,32].
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Looking at all of these results together, some preliminary conclusions can be drawn:

(1) The solenoidal solution space Vdiv,0 should indeed be used when modeling D or B, rather than the
widely-used Vdiv.

(2) Either mixed- or full-order, curl-conforming approximations may be used to approximate Vcurl, when
modeling E or H.

(3) For the same order of approximation, it appears that the new formulations based on Mð�; �Þ are more
accurate per degree of freedom, than those based on Nð�; �Þ. This makes sense, since the connectivity
of the curl-conforming degrees of freedom is higher than that of the divergence-conforming ones, result-
ing in less global degrees of freedom in the former case.

4.1.2. Formulations for general scatterers

Regarding the modeling of divergence-conforming quantities in this section: Consideration will not be given
to replacing Vdiv,0 with Vdiv, since this has already been shown to be disadvantageous. Also, zeroth-order
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(divergence-conforming, solenoidal) modeling will not be considered when discretizing Vdiv,0 · Vcurl and Vcurl ·
Vdiv,0, since such low-order modeling does not have a counterpart in the case of the curl-conforming space.

Here, the test problem is a homogeneous unit sphere (r0 = 1 m) with material parameters �r = 2 and lr = 3.
The structure is exited with a plane wave at k0 = 10 m.

Consider formulation (24) first. Fig. 4 shows the results. It can be observed that the formulation converges
as the cell size is refined. These results are very similar to those shown in Fig. 1, which can be attributed to the
fact that formulation (24) is a straight-forward combination of formulations (20) and (22).

Formulation (25) is evaluated in a similar manner, and the results are shown in Fig. 5. Note again, as in the
case of the dielectric results, that superior accuracy vs. degrees of freedom can be achieved with the formula-
tion modeling curl-conforming variables (25), as compared to the one modeling divergence-conforming
variables (24).

Formulations (26) and (28) are now evaluated. Since these are duals, only (26) is considered. Fig. 6 shows
the results. These results are also asymptotically convergent. It is interesting to see that full-order p

curl-conforming modeling performs better than does mixed-order p. This is not very surprising if one consid-
ers the following: In the formulation, the generally non-conforming representation of D/(�r�0) is projected
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onto a curl-conforming representation of E. On any given element K, the approximation to D/(�r�0) is solenoi-
dal and of polynomial order p, belonging to function space Dsol

p ðKÞ; similarly, the approximation to E is
curl-conforming to either mixed- or full polynomial order p, belonging to function spaces Cmixed

p ðKÞ or
Cfull

p ðKÞ, respectively. Now, from the definitions of these spaces [18,27] it follows that Dsol
p ðKÞ 6�Cmixed

p ðKÞ,
but that Dsol

p ðKÞ � Cfull
p ðKÞ. Therefore, full-order modeling of E implies that at least on the scale of a single

element, the projection can be exact, while mixed-order modeling does not.
Finally, evaluate formulations (27) and (29). Again, since these are duals, only (27) is considered. Fig. 7

shows the results. In this case, there is not a correlation between accuracy and the use of mixed- or full-oder
curl-conforming modeling, as was the case in Fig. 6. The reason being that the projection is now onto the sole-
noidal space, which is independent of the choice of curl-conforming representation.

4.2. Scattering by a general object

Now consider scattering by the general, circularly cylindrical, inhomogeneous object shown in Fig. 8. In all
cases, bistatic RCS will be shown, evaluated in the xz-plane, with incident plane wave excitation from (h, /) =
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(90�, 0�), with k0 = 1 m and ẑ-polarization of Einc. All calculations are performed on a mesh with nominal
element size 0.1 m. As a reference, results are compared with a solution from a stationary, hybrid finite
element-boundary integral (FE-BI) formulation [33], on a mesh which is finer by a factor of 2, employing sec-
ond-order basis functions (the specific formulation used is denoted by FE-BI(S-VT) [E, J]).

Fig. 9 shows results for the dielectric case, with �ð1Þr ¼ 2� j0:5, �ð2Þr ¼ 3� j1, and lð1Þr ¼ lð2Þr ¼ 1. Fig. 10
shows results for the general case, with the same permittivities, but with lð1Þr ¼ 4 and lð2Þr ¼ 1:5. In all cases,
solenoidal basis functions are used for Vdiv,0, and mixed-order ones for Vcurl, with the exception of full-order
modeling of E in (26), for reasons noted before.

Good agreement with the reference results can be observed for all formulations, and the improvements
afforded by the use of higher order basis functions are clear. All formulations yield results of similar accuracy.

4.3. Discussion

It has been shown that all formulations yield results of more or less the same accuracy, and moreover,
are convergent. The question of choosing an appropriate formulation now naturally arises. The pre-existing
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formulations (20), (22) and (24) are certainly viable options, but the new formulations have some distinct
advantages.

In the case of dielectric or magnetic scatterers, it has already been noted that less degrees of freedom are
required by the new, Mð�; �Þ operator-based formulations (21) and (23). Also, having both EF- and
MF-VIE-based formulations at hand, allows one the freedom to solve the dielectric/magnetic scatterer-
problem in terms of either an electric- or magnetic field related quantity.

In the case of general scatterers, some of the new formulations have an additional advantage, apart from
reducing the degrees of freedom. Consider the following matrix partitioning for the conventional formulation
(24):
Formulation G.1 (24): A ¼
AD;D AD;B

AB;D AB;B

� �
. ð36Þ
Each sub-matrix relates to an integral operator and is fully populated. Now consider
Formulation G.3 (26): A ¼
AD;D AD;E

AE;D AE;E

� �
. ð37Þ
Here sub-matrices AE,D and AE,E are both highly sparse, together constituting approximately half of the sys-
tem matrix. Similarly, half of the system matrices resulting from the new formulations (27)–(29) are also
sparse. This property has significant implications for fast solvers, which are based on the iterative solution
of the system matrix equation. With such solvers, the matrix is stored in a factored format, which requires
less computer memory, and less operations for a matrix–vector product than the standard form of the matrix.
With a fast solver, every sub-matrix resulting from an integral operator is usually treated separately. Thus, the
use of these new formulations in conjunction with a fast solver implies a reduction in computational costs by a
factor of approximately 2. Examples of fast solvers applied to the standard VIE matrix equations, and which
are also applicable to the new formulations, are numerous, e.g.: the fast multipole method and its multi-level
extension [34,35]; the adaptive integral method [36]; the QR-factorization method [37]; and FFT-based meth-
ods [38,39].

5. Conclusion

A comprehensive set of Galerkin projection formulations for the numerical solution of the electromagnetic
VIE’s was presented. This set includes pre-existing formulations, as well as a number of new ones. Results dem-
onstrated that all formulations converge with similar accuracy in the case of a sphere-scattering test problem. It
was further shown that solenoidal function spaces should be used to model electromagnetic flux densities as
solution variables, in order to obtain good convergence behaviour, instead of the standard divergence-conform-
ing spaces, which are never-the-less widely used today. To the author’s knowledge, higher-order results with
solenoidal discretizations were presented for the first time.

The newly proposed formulations all entail solving for some curl-conforming field(s). Such fields can be
discretized with fewer degrees of freedom than the divergence-conforming solution fields used in existing
approaches, implying lower computational costs for the new formulations. Moreover, some of the new formu-
lations for generally inhomogeneous scatterers yield system matrices which are approximately half-way sparse.
This means that computational costs will be down by a factor of 2 when iterative solvers are employed, which
is the case for the widely-used fast methods.

Various extensions to this work are possible. To reduce implementation complexity, one could consider
replacing Galerkin projection with the Nyström method described in [31]. Either way, it is very important
to optimize the implementations of the volume integrals for evaluating matrix entries. Here, Gaussian
quadrature in combination with Duffy’s method [40] was used. Further work is needed on this subject,
especially for the case of curvilinear elements. Finally, combining the efficient, new formulations with fast
solvers for improved performance, has already been suggested. This applies especially to the MF-VIE
based dielectric formulation (21) and EF-VIE based magnetic formulation (23), because these employ less
degrees of freedom; it also applies to the half-sparse formulations for general scatterers, in which case for-
mulations (27) and (29) are the most efficient, since both cost-reduction mechanisms feature to maximum
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benefit. Note that when combined with a fast solver, the VIE-based formulations compare quite favorably
with FE- and FE-BI formulations in terms of computational cost scaling, especially when taking into
account that the FE-based formulations suffer from dispersion errors, while the VIE-based formulations
do not.
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